===== ℒᵖ space ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $ p\in [1,\infty) $ | | @#55CCEE: context | @#55CCEE: $ \mathbb K = \mathbb C \lor \mathbb R $ | | @#55CCEE: context | @#55CCEE: $ \langle X,\Sigma,\mu\rangle $ ... measure space | | @#FFBB00: definiendum | @#FFBB00: $f\in\mathcal L^p(X,\mu)$ | | @#55EE55: postulate | @#55EE55: $f:X\to \mathbb K $ | | @#55EE55: postulate | @#55EE55: $\left(\int_X\ |f|^p\ \text d\mu\right)^\frac{1}{p}$ ... finite | ==== Discussion ==== Trivial remark: As explained in the notation section of the entry [[relation concatenation]], the symbol $|f|^p$ denotes the function obtained by concatenation of the functions $f$ and $x\mapsto |x|^p$. $\mathcal L^p(X,\mu)$ is a seminormed $\mathbb K$-vector space with [[Pointwise function product|pointwise]] addition and scalar multiplication and ^ $ \Vert \cdot \Vert_p:\mathcal L^p(X,\mu)\to \mathrm R_+ $ ^ ^ $ \Vert f\Vert_p:=\left(\int_X\ |f|^p\ \text d\mu\right)^\frac{1}{p} $ ^ ==== Parents ==== === Subset of === [[Seminorm]] === Context === [[Function integral]] === Related === [[Pointwise function product]]