===== Ball volume ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $ p\in \mathbb N $ | | @#FFBB00: definiendum | @#FFBB00: $V_p:\mathbb R_+\to \mathbb R_+$ | | @#FFBB00: definiendum | @#FFBB00: $V_p(r):=\beta^p(B_0(r))$ | ==== Discussion ==== === Theorems === For all $a\in \mathbb R^p$, the volume of the ball $B_a(r)$ is the same and given by ^ $V_p(r)= \pi^{p/2}\ \Gamma(p/2+1)^{-1}\ r^p $ ^ === Reference === Wikipedia: [[http://en.wikipedia.org/wiki/Volume_of_an_n-ball|Volume of an n-ball]] ==== Parents ==== === Context === [[Lebesgue-Borel measure]], [[Open ball]]