===== Binomial coefficient over the complex numbers ===== ==== Function ==== | @#FF9944: definition | @#FF9944: $??$ | | @#FF9944: definition | @#FF9944: ${x\choose{y}} := \dfrac{1}{\Gamma(y+1)}\dfrac{\Gamma(x+1)}{\Gamma((x+1)-(y+1)+1)}$ | ----- $(1+z)^s$ Sum[Gamma[1 + x]/(Gamma[1 + x - y] Gamma[1 + y])z^y, {y, 0, \[Infinity]}] === Discussion === For natural numbers $n\ge{k}$ we get ${n\choose{k}} = \dfrac{1}{k!}\dfrac{n!}{(n-k)!}$ === Theorems === ${m\choose{m}} = 1$ ${m\choose{0}} = 1$ == Pascal's identity (recursive formula) == ${n\choose{k}} = {n\choose{k-1}} + {n-1\choose{k-1}}$ From this it's also clear that ${n\choose{k}}$ is a sum of 1's, i.e. an integer. (*Random generalization of linear such recursive schemes*) f[m_, 0] = a[m]; f[0, m_] = b[m]; f[m_, m_] = c[m]; f[n_, k_] := A*f[n, k - 1] + B*f[n - 1, k] + C*f[n - 1, k - 1] Table[{n, k, f[n, k] // sexy}, {n, 1, 4}, {k, 1, 4}] // TableForm === Reference === Wikipedia: [[https://en.wikipedia.org/wiki/Binomial_coefficient#Two_real_or_complex_valued_arguments|Binomial coefficient]] ----- === Requirements === [[Gamma function]]