===== Category of open sets ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $\langle X,\mathcal T\rangle$ ... topological space | | @#AAFFAA: inclusion | @#AAFFAA: $\mathrm{Op}(X)$ ... category | | @#FF9944: definition | @#FF9944: $\mathrm{Ob}_{\mathrm{Op}(X)}\equiv \mathcal T$ | | @#FFFDDD: for all | @#FFFDDD: $V,U\in\mathrm{Ob}_{\mathrm{Op}(X)}$ | | @#FF9944: definition | @#FF9944: $\mathrm{Op}(X)[V,U]\equiv\{i:V\to U\ |\ i(x)=x\}$ | ==== Discussion ==== In the category of open sets, the arrows are the inclusion functions. In the case $V\subseteq U$, the hom-set $\mathrm{Op}(X)[U,V]$ is the singleton $\{i\}$ and otherwise it's empty. === Reference === Wikipedia: [[http://en.wikipedia.org/wiki/Sheaf_%28mathematics%29|Sheaf]] ==== Parents ==== === Element of === [[Cat]], [[Thin category]]