===== Cumulative distribution function ===== ==== Set ==== | @#FFBB00: definiendum | @#FFBB00: $F\in\mathrm{CDF} $ | | @#AAFFAA: inclusion | @#AAFFAA: $F:\mathbb R\to\mathbb R$ ... right-continuous function, monotonically increasing | | @#55EE55: postulate | @#55EE55: $\lim_{x\to\ -\infty} F(x)=0$ | | @#55EE55: postulate | @#55EE55: $\lim_{x\to\ +\infty} F(x)=1$ | ----- >$P=F'$ >Let $S:({\mathbb D}\to {\mathbb R}_{\ge 0})\to{\mathbb R}_{\ge 0}$ be linear. >If $f$ with $\infty>Sf>0$, then $\bar{f}:=\frac{1}{Sf}\cdot f$ has $S\bar{f}=\frac{Sf}{Sf}=1$. >So we can use such $S$ to normalize functions. > >For ${\mathbb D}={\mathbb N}$ the general case is $Sf:=\sum_{n=0}^\infty (L_nf)(n)$, where $(L_n)$ is a suitable sequence of linear operations (e.g. differential operators). For $L_n={\mathrm{id}}$ we get the standard sum (see below). >For ${\mathbb D}\subseteq{\mathbb R}^m$ we have integrals. > > >Let $a:{\mathbb N}\to{\mathbb R}_{\ge 0}$ be a sequence, then > >$\bar{a}:{\mathbb N}\to[0,1]$ > >$\bar{a}(n):=\frac{1}{\sum_{k=0}^\infty a(k)}\cdot a(n)$ > >has >$\sum_{n=0}^\infty \bar{a}(n)=1$ >The "monomial bump" on $[-d,d]$, which goes against the constant probability $\frac{1}{2d}$ for large $n$: >$P_{n,d}(x):=\frac{1}{2d}\left(1+\frac{1}{2n}\right)\cdot\left(1-\left(\frac{x}{d}\right)^{2n}\right)$ >$\int_{-d}^dP_{n,d}(x)\,{\mathrm d}x=1$ >Die Funktion hängt mit dem sog. Epanechnikov-Kern zusammen. === Reference === Wikipedia: [[https://en.wikipedia.org/wiki/Cumulative_distribution_function|Cumulative distribution function]] ----- === Subset of === [[ℝ valued function]], [[Monotonically increasing function]], [[Right-continuous function]] === Related === [[Probability space]]