===== Epanechnikov-like bump . PDF ===== ==== Function ==== | @#55CCEE: context | @#55CCEE: $x_0,d:{\mathbb R}$ | | @#FF9944: definition | @#FF9944: $k_n:{\mathbb N}_{\ge 0}\to{\mathbb R}\to{\mathbb R}_{\ge 0}$ | | @#FF9944: definition | @#FF9944: $k_n(x):=\begin{cases} \dfrac{1}{2d}\left(1+\dfrac{1}{2n}\right)\left(1-\left(\dfrac{x-x_0}{d}\right)^{2n}\right) &\hspace{.5cm} \mathrm{if}\hspace{.5cm} \vert x \vert\le 1 \\\\ 0 \hspace{.5cm} &\hspace{.5cm} \mathrm{else} \end{cases} $ | ----- === Discussion === $\lim_{n\to\infty}k_n$ is the normed $x_0$-centered rectangle of height $\frac{1}{2d}$. We can of course linearly combine several such $k$-bumps and then normalize to obtain new PDF's. == Theorems == $\int_{x_0-d}^{x_0+d}\left(\dfrac{x}{d}\right)^{2m} k_n(x)\,{\mathrm d}x=\dfrac{1}{2(n+m)+1}\dfrac{2n+1}{2m+1}$ === Code === P[n_, d_, x0_, x_] = 1/(2 d) (1 + 1/(2 n)) (1 - ((x - x0)/d)^(2 n)); Integrate[P[n, d, x0, x], {x, x0 - d, x0 + d}] // Expand Manipulate[ Plot[ P[n, d, x0, x], {x, -3, 4} , PlotRange -> {0, 1}, Filling -> Axis] , {{n, 3}, 0, 50, 1}, {{d, 1}, 0, 3}, {{x0, 2}, -4, 4}] === Reference === Wikipedia: [[https://de.wikipedia.org/wiki/Epanechnikov-Kern|Epanechnikov-Kern]] ----- === Requirements === [[Function integral]]