===== Finite geometric series ===== ==== Function ==== | @#55CCEE: context | @#55CCEE: $n\in{\mathbb N}$ | | @#FF9944: definition | @#FF9944: $Q_n: \mathbb C\to\mathbb C$ | | @#FF9944: definition | @#FF9944: $Q_n(z):=\sum_{k=0}^n z^k $ | ----- >todo: In fact $\sum_{k=0}^n a^k\,b^{n-k} = \dfrac{1}{a-b}(a^{n+1}-b^{n+1})$ so $\sum_{k=0}^n z^k = \dfrac{1}{1-z}(1-z^{n+1})$ i.e. $\dfrac{1}{1-z} = \dfrac{1}{1-z\cdot{z^n}} \sum_{k=0}^n z^k$ i.e. $z^{n+1}-1 = (z-1)\sum_{k=0}^n z^k$ == Remarks == The last line can be used to show that a bunch of ugly expressions have a factor. You may extend it to $\left(z^{n+1}-(a+1)\right)+a = (z-1)\sum_{k=0}^n z^k$ etc. The proof of the infinitude of primes using Fermat numbers uses this. In $\mathbb C$, the equation $\left(\frac{x}{b}\right)^n=1$ is solved by $x=b\cdot{\mathrm e}^{2\pi i\frac{k}{n}}$, so $a^n-b^n = (a-b)\prod_{k=1}^{n-1} (a-b\cdot{\mathrm e}^{2\pi i\frac{k}{n}})$ n = 6; Product[a - b*Exp[2 \[Pi] I*k/n], {k, 1, n}] // FullSimplify === References === Wikipedia: [[https://en.wikipedia.org/wiki/Geometric_series|Geometric series]], [[https://en.wikipedia.org/wiki/Geometric_progression |Geometric progression]] ----- === Requirements === [[Complex number]] === Related === [[Infinite geometric series]]