===== Function integral on ℝⁿ ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $p\in \mathbb N$ | | @#FFBB00: definiendum | @#FFBB00: $I^p: (\mathbb R^p\to\overline{\mathbb R})\to\overline{\mathbb R}$ | | @#FFBB00: definiendum | @#FFBB00: $I^p(f):=\int_{\mathbb R^p}\ f\ \mathrm d\lambda^p$ | ==== Discussion ==== Because the integral above coincides with the Lebesgue–Stieltjes integral for the monotone function $F(x):=x$, we'll also denote $I^p(f)$ by $\int_{\mathbb R^p}\ f(x)\ \mathrm dx^p$ with the argument $x\in \mathbb R^p$ of $f$ becoming a dummy index. === Theorems === For $f:X\to \mathbb R$...differentiable and $f'$...[[Bounded function|bounded]], we have ^ $ \int_a^b\dfrac{{\mathrm d}f}{{\mathrm d}x}{\mathrm d}x = f(b)-f(a) $ ^ ^ $ {\mathrm d}\left(\int_{v(y)}^{w(y)}\,f(x)\,{\mathrm d}x\right) = f(v(y))\,{\mathrm d}v(y)-f(w(y))\,{\mathrm d}w(y) $ ^ For $f$ convex and $\langle f\rangle_{[a,b]}:=\dfrac{1}{b - a}\int_a^b f(x)\,{\mathrm d}x$ ^ $\dfrac{f(a) + f(b)}{2} \ge \langle f\rangle_{[a,b]} \ge f \left(\dfrac{a+b}{2}\right) $ ^ See references. == Kernel of he integral == A linear combination of functions that are zero under an integral are again zero. Special case $$\int_{-a}^a E(x) \left( \dfrac{1}{2} + \sum_{k=0}^\infty c_k U_k(x)^{2k+1} \right) \,{\mathrm d}x = \int_0^a E(x) \,{\mathrm d}x$$ e.g. all $U_k$ the same and $c_k$ so that you get $\frac{1}{1\pm e^{y}}$: $$\int_{-a}^a E(x) \dfrac{1}{1\pm {\mathrm e}^{U(x)}}\,{\mathrm d}x = \int_0^a E(x) \,{\mathrm d}x$$ $$\int_{-a}^a f(x^2) \dfrac{1}{1 + {\mathrm e}^{x^2\sin(x)}}\,{\mathrm d}x = \int_0^a f(x^2) \,{\mathrm d}x$$ === References === Wikipedia: [[https://en.wikipedia.org/wiki/Hermite%E2%80%93Hadamard_inequality|Hermite–Hadamard inequality]] ----- === Subset of === [[Function integral]] === Context === [[Lebesgue measure]] === Related === [[Integral over a subset]], [[Fréchet derivative]]