===== Hilbert space mean value ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $V$...Hilbert space | | @#FFBB00: definiendum | @#FFBB00: $\overline{\cdot}_{-}:\mathrm{Observable}(V)\times V\to\mathbb R$ | | @#FFBB00: definiendum | @#FFBB00: $\overline{A}_{\psi}:=\frac{\langle \psi | A\ \psi \rangle}{\Vert \psi \Vert^2}$ | ==== Discussion ==== One can rewrite this in many ways using: * $\langle \psi | A\ \psi \rangle=\langle A \rangle_\psi$ * $\Vert \psi \Vert^2=\langle \psi | \psi \rangle=\langle 1 \rangle_\psi$ For any vector $\phi$ we have... * $\Delta_\psi A = \left(\overline{\left(A-\overline A\right)^2}\right)^\frac{1}{2} = \overline{A^2}-\overline{A}^2=\frac{\Vert(A-\overline A)\psi\Vert}{\Vert\psi\Vert}$ is called non-negative mean fluctuation. * $\gamma=\overline{(A-\overline{A})(B-\overline{B})}/(\Delta A\cdot \Delta B)=(\overline{AB}-\overline{A}\overline{B})/(\Delta A\cdot \Delta B)$ is called the correlation coefficient. === Theorems === $AB=BA\implies \gamma\in [-1,1]$. ==== Parents ==== === Context === [[Hilbert space]]