===== Inverse function ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $ f\in X^Y_\text{inj} $ | | @#55EE55: postulate | @#55EE55: $ f^{-1} \equiv f^\smile $ | ==== Discussion ==== We have $\text{im}(f^{-1})=\text{dom}(f)=X,$ $\text{dom}(f^{-1})=\text{im}(f).$ Injectiveness of $f$ implies there is a left "left inverse" of the function: $f^{-1}\circ f=\text{id}$. Surjectiveness implies there is a "right inverse", so for [[bijective function]]s the above line extens to $\text{dom}(f^{-1})=\text{im}(f)=Y$ and hence for $f:X\to Y$, we can declare $f^{-1}:Y\to X$. === Reference === Mizar files: [[http://mizar.org/JFM/Vol1/funct_1.html|FUNCT_1]] ==== Parents ==== === Context === [[Injective function]], [[Reversed relation]]