===== Means . Note === ==== Note ==== | @#55CCEE: context | @#55CCEE: $S$ ... set | | @#55CCEE: context | @#55CCEE: $G$ ... group | | @#55CCEE: context | @#55CCEE: $w:S\to G$ | | @#55CCEE: context | @#55CCEE: $I:(S\to G)\to G$ | | @#FFBB00: definiendum | @#FFBB00: $M:(S\to G)\to G$ | | @#FFBB00: definiendum | @#FFBB00: $\langle f\rangle:=I(f\cdot w)\cdot I(w)^{-1}$ | Here $(f\cdot w)(s):=f(s)*w(s)$ where $*$ is the group operation. == Real functions == E.g. $\langle f\rangle_{[a,b]}:=\dfrac{\int_a^bf(x)\,{\mathrm dx}}{b-a}$ where $[a,b]\subseteq{\mathbb R}$ and $w(x):=1$. == Minus twelve == For $z\in(0,1)$, we find $\sum_{k=0}^\infty \langle q\mapsto q\,z^q\rangle_{[k,k+1]}=\dfrac{1}{\ln(z)^2}$, i.e. (see [[Natural logarithm of complex numbers]]) $\sum_{k=0}^\infty \left(k\,z^k-\langle q\mapsto q\,z^q\rangle_{[k,k+1]}\right)=\dfrac{z}{(z-1)^2}-\dfrac{1}{\ln(z)^2}=-\dfrac{1}{12}+{\mathcal O}\left((z-1)^1\right)$ See [[Minus twelve . Note]]. ----- === Requirements === [[Function integral]], [[Classical probability density function]]