===== Module ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $M,R$ | | @#55EE55: postulate | @#55EE55: $\langle\mathcal M,\mathcal R, *\rangle \in \mathrm{module}(\mathcal M,\mathcal R)$ | | @#55CCEE: context | @#55CCEE: $\langle\mathcal M,\mathcal R, *\rangle \in \mathrm{leftModule}(\mathcal M,\mathcal R)$ | | @#55CCEE: context | @#55CCEE: $\mathcal M\in \mathrm{abelianGroup}(M)$ | Now denote the multiplication in the ring $\mathcal R$ by "$\ \hat*\ $". | $r,s\in R$ | | @#55EE55: postulate | @#55EE55: $r*s=s*r$ | ==== Discussion ==== A module is a left module with a //commutative// ring acting on the group. One generally speaks of an $R$-module over $M$. Here $R$ and $M$ are just sets. https://www.youtube.com/watch?v=yZ2dO6Fy5Kc === Reference === Wikipedia: [[http://en.wikipedia.org/wiki/Module_%28mathematics%29|Module]] ==== Parents ==== === Subset of === [[Left module]]