===== Multi-index power ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $ G $ ... group | | @#55CCEE: context | @#55CCEE: $ g \in \text{Sequence}(G) $ | | @#55CCEE: context | @#55CCEE: $ \alpha \in \text{Sequence}(\mathbb N) $ | | @#55CCEE: context | @#55CCEE: $ \mathrm{length}(g)=\mathrm{length}(\alpha) $ | | @#FFBB00: definiendum | @#FFBB00: $ \langle g,\alpha\rangle \mapsto g^\alpha := \prod_{i=1}^{\mathrm{length}(\alpha)} g_i^{\alpha_i} $ | We also write $|\gamma|=\sum_i^{\mathrm{length}(\gamma)} \gamma_i $. ==== Discussion ==== In most cases, the base sequence is understood. E.g. if $\gamma=\langle 3,1,0,0,2 \rangle$ is taken to be a multiindex, then $|\gamma|=6$ and we write $f^{(\gamma)}(x) \equiv \frac{\partial^{|\gamma|}}{\partial x^\gamma} f \equiv \frac{\partial^3}{\partial x_1^3} \frac{\partial}{\partial x_2} \frac{\partial^2}{\partial x_5^2} f $ === Reference === Wikipedia: [[http://en.wikipedia.org/wiki/Multi-index_notation|Multi-index notation]] ==== Parents ==== === Context === [[Group]], [[Integer]], [[Sequence length]]