===== Neighbourhood ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $\langle X,\mathcal{T}_X\rangle$ ... topological space | | @#55CCEE: context | @#55CCEE: $p\in X$ | | @#FFBB00: definiendum | @#FFBB00: $ U_p\in\mathrm{it} $ | | @#55EE55: postulate | @#55EE55: $ \exists(\mathcal{O}\in\mathcal{T}_X).\ \mathcal{O}\subseteq U_p $ | ==== Discussion ==== A neighbourhood of $p$ is a reasonably big set surrounding $p$. === Predicates === Consider $X$ together with a topology, then //locally euclidean space// means $X$ is homeomorphic to $\mathbb R^n$: | @#EEEE55: predicate | @#EEEE55: $X$ ... locally euclidean space $ \equiv \forall(x\in X).\ \exists(U_x\in\mathrm{Neighbourhood}(x)),\ f.\ f\in\mathrm{Homeomorphism}(U_x,\mathbb R^n)$ | //topoloical manifold// means Hausdorff space + locally euclidean space: | @#EEEE55: predicate | @#EEEE55: $X$ ... topoloical manifold $ \equiv X$ ... Hausdorff space, locally euclidean space | === Reference === Wikipedia: [[http://en.wikipedia.org/wiki/Hausdorff_space|Hausdorff space]], [[http://en.wikipedia.org/wiki/Topological_manifold|Topological manifold]] ==== Parents ==== === Context === [[Topological space]] === Related === [[Homeomorphism]]