===== Niemand seqeunce ===== ==== Note ==== Let's define a Niemand sequence $(a_{n,N})$ as a sequence (in $N$) of sequences (in $n$). The map $(a_{n,N}) \mapsto (S_N):=\sum_{n=0}^N a_{n,N}$ removes the $n$-index. And then $(S_N) \mapsto \sum_{n=0}^N S_N$ removes the second. === Examples === == a{n,N} constant in N == For $a_{n,N}$ constant in $N$, the series $\sum_{n=0}^N a_{n,N}$ is just the sequence of partial sums. == Riemann integral == $f$ a function and $x_0,x_1$ numbers. With $h(N):=\dfrac{x_1-x_0}{N}$ $a_{n,N}:=h(N)\,f\left(x_0+n\,h(N)\right)$ we have that $\sum_{n=0}^N a_{n,N}$ is the Riemann sum and $\lim_{N\to\infty}\sum_{n=0}^N a_{n,N}=\int_{x_0}^{x_1}f(x)\,{\mathrm d}x$ (see [[Limit in a metric space]]) == Exponential function == >todo: compare the following construction with the two q-exponentials $a_{n,N} = \left(\prod_{k=1}^n\left(1-\dfrac{k-1}{N}\right)\right) \dfrac{1}{n!}\left(\dfrac{C(N)\,k\,z}{1-\frac{k\zeta}{N}}\right)^n $ ${\mathrm e}_N(z):=\sum_{n=0}^N a_{n,N} = \left(1+\dfrac{1}{1-\frac{k\zeta}{N}}c(N)\dfrac{z}{N}\right)^N$ Fulfills ${\mathrm e}_N'(\zeta)=k\,{\mathrm e}_N(\zeta)$ (only for $z=\zeta$, not for all of $z$ like the exponential function) and with $c(N)=1$, we have $\lim_{N\to\infty}\sum_{n=0}^N a_{n,N}={\mathrm e}^{k\,z}$ Sum[Product[1 - (k - 1)/N, {k, 1, n}] ((C[N] k z)/(1 - (k \[Zeta])/N))^n/n!, {n, 0, N}] // simple What's nice here is that also $\sum_{n=0}^\infty \lim_{N\to\infty} a_{n,N} = {\mathrm e}^{k\,z}$ (see [[Exponential function]]) == Inverting z == $a_{n,N} = -\left(\prod_{k=1}^n\left(1-\frac{k}{N}\right)\right)\dfrac{(-c(N))^{n+1}}{n+1}\dfrac{z^n}{n!}$ $\sum_{n=0}^{N-1} a_{n,N} = \dfrac{1}{z} \left(1 - (1-\frac{c(N)\,z}{N})^N\right)$ For $c(N):=c$ a constant, this is a sort of regularization of $\dfrac{1}{z}$ and has the limit $N\to\infty$ of $\dfrac{1-{\mathrm e}^{-c\,z}}{z}$. Sum[-Product[1 - k/N, {k, 1, n}] ((-c[N])^(n+1)/(n + 1)) z^n/n!, {n, 0, N - 1}] // Simplify (see [[Infinite geometric series]]) In fact, let $\phi(z):=-\left(1-\dfrac{c(N)\,z}{N}\right)^N$ Then $\dfrac{1}{z} \left(1 - (1-\frac{c(N)\,z}{N})^N\right) = \dfrac{\phi(0+z)-\phi(0)}{z}$ is just the finite difference quotient of this at $z=0$. === References === ----- === Context === [[Infinite series]] === Related === [[Infinite sum of complex numbers]], [[Finite geometric series]]