===== Non-strict partial order ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $X$ | | @#FFBB00: definiendum | @#FFBB00: $ \le\ \in\ \mathrm{it} $ | The relation $\le$ is an order relation if it's in the intersection of all reflexive, all anti-symmetric and all transitive relation. Hence | @#55CCEE: context | @#55CCEE: $ \le\ \in\ \mathrm{Rel}(X) $ | | $ x,y,z \in X $ | | @#55EE55: postulate | @#55EE55: $ x \le x $ | | @#55EE55: postulate | @#55EE55: $ x\le y\ \land\ y\le x \implies (x=y) $ | | @#55EE55: postulate | @#55EE55: $ x \le y\ \land\ y \le z \Leftrightarrow x\le z $ | Here we use infix notation: $x\le y\ \equiv\ \le(x,y)$. ==== Discussion ==== === Reference === Wikipedia: [[http://en.wikipedia.org/wiki/Order_relation|Order theory]], [[http://en.wikipedia.org/wiki/Poset|Poset]] ==== Parents ==== === Subset of === [[Reflexive relation]], [[Anti-symmetric relation]], [[Transitive relation]] === Equivalent to === [[Poset]]