===== Power set ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $X$ ... set | | @#FFBB00: definiendum | @#FFBB00: $ Y \in \mathcal{P}(X) $ | | @#55EE55: postulate | @#55EE55: $ Y\subseteq X $ | ----- Here we define $\mathcal{P}(X) \equiv \{Y\mid Y\subseteq X\}$ which is sensible in our set theory if, for each set $X$, we have $\exists! P.\,P = \{Y\mid Y\subseteq X\}$ or, more formally, $\forall X.\,\exists! P.\,P = \{Y\mid Y\subseteq X\}$ which is short for $\forall X.\,\exists! P.\,\forall Y.\,\left(Y\in P\Leftrightarrow Y\subseteq X\right)$ === Discussion === The above is short for $\forall X.\,\exists! P.\,\forall Y.\,\left(Y\in P\Leftrightarrow \forall Z.\,(Z\in Y\implies Z\in X)\right)$ and this is, apart from the exclamation mark,exactly the [[https://en.wikipedia.org/wiki/Axiom_of_power_set|Axiom of power set]]. Like in the case of the [[empty set]], uniqueness follows from extensionality. == Examples == We can prove $\forall Y.\,\left(Y\in \{\emptyset\}\leftrightarrow Y\subseteq \emptyset\right)$ Therefore, for $X$ being $\emptyset$, we can show that the job of $P$ is done by $\{\emptyset\}$. In other words ^ $\mathcal{P}(\emptyset)=\{\emptyset\}$ ^ == Remarks == Generally, $\emptyset\in\mathcal{P}(X)$ for any $X$. Hence no power set is empty. One also writes $ \mathcal{P}(X) \equiv 2^X\equiv\Omega^X $. === Reference === Wikipedia: [[https://en.wikipedia.org/wiki/Axiom_of_power_set|Axiom of power set]] ----- === Context === [[Sets]]