===== Real logarithm ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $ x,b\in\mathbb R_+^* $ | | @#55CCEE: context | @#55CCEE: $ b\neq 1 $ | | @#FFBB00: definiendum | @#FFBB00: $\log_b(x):\mathbb R_+^*\to \mathbb R_+^*$ | | @#FFBB00: definiendum | @#FFBB00: $\log_b(x):= y$ | | @#55EE55: postulate | @#55EE55: $b^y=x$ | ----- The logarithm function is that of the Dimension Consider $\log_r(r^n/r^1) = \log_r(r^{n-1}) = n - 1 = \log_r(r^n) - \log_r(r^1)$ vs. ${\mathrm {dim}}({\mathbb R}^n/{\mathbb R}^1) = {\mathrm {dim}}({\mathbb R}^{n-1}) = n - 1 = {\mathrm {dim}}({\mathbb R}^n)-{\mathrm {dim}}({\mathbb R}^1)$ where by ${\mathbb R}^n/{\mathbb R}^1$ we mean a quotient vector space . === Theorems === ^ $\log_\mathrm{e}=\mathrm{ln}$ ^ === Reference === Wikipedia: [[http://en.wikipedia.org/wiki/Exponentiation|Exponentiation]] ----- === Element of === === Context === [[Complex exponents with positive real bases]]