===== Real number ===== ==== Set ==== | @#FFBB00: definiendum | @#FFBB00: $ r \in \mathbb R $ | | @#FFFDDD: for all | @#FFFDDD: $x,y\in \mathbb Q$ | | @#FFFDDD: for all | @#FFFDDD: $ r\subset \mathbb Q, r\neq \emptyset $ | | @#55EE55: postulate | @#55EE55: $ y\in r\implies x\in r $ | | @#55EE55: postulate | @#55EE55: $ \neg\ \exists (b\in r).\ \forall (a\in r).\ a<_{\mathbb Q}b $ | ----- === Discussion === {{ are you for reals.jpg?X250}} Remark: We distinguish between "$\subset$" and "$\subseteq$", i.e. the above definition implies $ r\neq \mathbb Q $. Each real number is modeled as a Dedekind cut of $ \mathbb Q $ into two pieces. The axioms above say that $r$ is a $<_{\mathbb Q}$-complete set with no upper bound. We define the total order of the reals via $s