===== Ring ===== ==== Set ==== | @#55CCEE: context | @#55CCEE: $\langle X,+ \rangle \in \mathrm{AbelianGroup}(X)$ | | @#FFBB00: definiendum | @#FFBB00: $\langle X,+,* \rangle\in\mathrm{it}$ | | @#FFFDDD: for all | @#FFFDDD: $a,b,c\in X$ | | @#55EE55: postulate | @#55EE55: $(a*b)*c=a*(b*c)$ | | @#55EE55: postulate | @#55EE55: $a*(b+c)=(a*b)+(a*c)$ | | @#55EE55: postulate | @#55EE55: $(b+c)*a=(b*a)+(c*a)$ | ==== Discussion ==== One might call the commutative group operation "$+$" the //addition// and the other one "$*$" the //multiplication//. In a [[unital ring]], the latter has an identity too. One generally calls $X$ the ring, i.e. the set where the operations "$+$" and "$*$" are defined on. === Reference === Wikipedia: [[http://en.wikipedia.org/wiki/Ring_%28mathematics%29|Ring]] {{ueberall_blumen_und_girlanden_halb_zerknuellt.jpg?X600 }} /* Claudia Krizmanits 2014 */ ----- === Subset of === [[Semiring]] === Context === [[Abelian group]]