===== Sine function ===== ==== Function ==== | @#FFBB00: definiendum | @#FFBB00: $\mathrm{\sin}: \mathbb C\to\mathbb C$ | | @#FFBB00: definiendum | @#FFBB00: $\sin(z) := \sum_{k=0}^\infty \frac{(-1)^{k}}{(2k+1)!}z^{2n+1} $ | ----- $\theta\in\mathbb R$ ^ $\sin(\theta) = \frac{1}{2i}(\mathrm e^{i\theta}-\mathrm e^{-i\theta}) $ ^ i.e. if $\zeta:=\mathrm e^{i\theta}$, then $\zeta_\theta-\overline{\zeta_\theta}=2i\sin(\theta)$. == Theorem == * From $\sum_{n=a}^{b}{\mathrm e}^{2kn}=\sum_{n=a}^{b}\left({\mathrm e}^{2k}\right)^n=\dots$ we get $\sum_{n=a}^{b}\sin(2kn)=\dfrac{\sin (k (a-b-1)) \sin (k (a+b))} {\sin(k)}$ * The following is kinda odd: Integrate[Sin[a*x]*Sin[b*x]/x^2,{x,0,Infinity}] Integrate[Sin[k*x]*Sin[(k+q)*x]/x^2,{x,0,Infinity}] ----- === Context === [[Infinite sum of complex numbers]], [[Factorial function]] === Related === [[Exponential function]]