===== Sine function =====
==== Function ====
| @#FFBB00: definiendum | @#FFBB00: $\mathrm{\sin}: \mathbb C\to\mathbb C$ |
| @#FFBB00: definiendum | @#FFBB00: $\sin(z) := \sum_{k=0}^\infty \frac{(-1)^{k}}{(2k+1)!}z^{2n+1} $ |
-----
$\theta\in\mathbb R$
^ $\sin(\theta) = \frac{1}{2i}(\mathrm e^{i\theta}-\mathrm e^{-i\theta}) $ ^
i.e. if $\zeta:=\mathrm e^{i\theta}$, then $\zeta_\theta-\overline{\zeta_\theta}=2i\sin(\theta)$.
== Theorem ==
* From
$\sum_{n=a}^{b}{\mathrm e}^{2kn}=\sum_{n=a}^{b}\left({\mathrm e}^{2k}\right)^n=\dots$
we get
$\sum_{n=a}^{b}\sin(2kn)=\dfrac{\sin (k (a-b-1)) \sin (k (a+b))} {\sin(k)}$
* The following is kinda odd:
Integrate[Sin[a*x]*Sin[b*x]/x^2,{x,0,Infinity}]
Integrate[Sin[k*x]*Sin[(k+q)*x]/x^2,{x,0,Infinity}]
-----
=== Context ===
[[Infinite sum of complex numbers]],
[[Factorial function]]
=== Related ===
[[Exponential function]]