===== Taylor's formula ===== ==== Theorem ==== | $k,n\in \mathbb N,\ k>n$ | | $f\in C^k(\mathbb R^n,\mathbb R)$ | | @#55EE55: postulate | @#55EE55: $f(x) = \sum_{|\alpha|\le k} \frac{1}{\alpha !} f^{(\alpha)}(0)\ x^\alpha + R_k(x) $ | with | @#55EE55: postulate | @#55EE55: $ R_k(x) = \sum_{|\alpha|=k+1} \frac{k+1}{\alpha !} \left( \int_0^1\ (1-s)^k\ F^{(\alpha)}(s\ x)\ \mathrm ds \right)\ x^\alpha $ | where we use multi-index notation for $\alpha \in \mathrm{FinSequence}(\mathbb N)$, see [[Multi-index power]]. ==== Discussion ==== $f\in C^\infty(\mathbb R,\mathbb R)$, $a\in \mathbb R$ ^ $ f(x) = \sum_{n=0}^\infty f^{(n)}(a) \frac{1}{n!} (x-a)^n$ ^ === Reference === ==== Parents ==== === Context === [[Fréchet derivative]], [[Function integral]]