definiendum | $\langle \mathbb R,+_\mathbb{R},\cdot_\mathbb{R} \rangle$ |
postulate | $ r +_\mathbb{R} s = \{q+_\mathbb{Q}p\ |\ (q\in r)\land (p\in s)\} $ |
postulate | $ r -_\mathbb{R} s = \{q-_\mathbb{Q}p\ |\ (q\in r)\land (p\in \mathbb Q\setminus s)\} $ |
postulate | $ -_{\mathbb R}r = \{q-_\mathbb{Q}p\ |\ (p\in \mathbb Q\setminus r)\land (q<0)\} $ |
postulate | $ r\ge 0\land s\ge 0\implies r\cdot_\mathbb{R}s = \{q\cdot_\mathbb{Q}p\ |\ (q\in r)\land (p\in s)\land (q,p\ge 0)\}\cup\{q\ |\ (q\in\mathbb Q)\land (q<0)\} $ |
postulate | $ r\ge 0\land s < 0\implies r\cdot_\mathbb{R}s = -(r\cdot_\mathbb{R}(-s)) $ |
postulate | $ r < 0\land s\ge 0\implies r\cdot_\mathbb{R}s = -((-r)\cdot_\mathbb{R}s) $ |
postulate | $ r < 0\land s < 0\implies r\cdot_\mathbb{R}s = (-r)\cdot_\mathbb{R}(-s) $ |
postulate | $ r\ge 0\land s > 0\implies r/_\mathbb{R}s = \{q/_\mathbb{Q}p\ |\ (q\in r)\land (p\in \mathbb Q\setminus s)\} $ |
postulate | $ r\ge 0\land s < 0\implies r/_\mathbb{R}s = -(r/_\mathbb{R}(-s)) $ |
postulate | $ r < 0\land s > 0\implies r/_\mathbb{R}s = -((-r)/_\mathbb{R}s) $ |
postulate | $ r < 0\land s < 0\implies r/_\mathbb{R}s = (-r)/_\mathbb{R}(-s) $ |
The operations $+_\mathbb{Q}$ and $\cdot_\mathbb{Q}$ on the right hand sides are these of arithmetic structure of rational numbers.