| context | $ p\in \mathbb N $ |
| definiendum | $V_p:\mathbb R_+\to \mathbb R_+$ |
| definiendum | $V_p(r):=\beta^p(B_0(r))$ |
For all $a\in \mathbb R^p$, the volume of the ball $B_a(r)$ is the same and given by
| $V_p(r)= \pi^{p/2}\ \Gamma(p/2+1)^{-1}\ r^p $ |
|---|
Wikipedia: Volume of an n-ball