Banach space

Set

context $V$ … normed $F$-vector space
definiendum $\mathcal V \in \mathrm{it}$
forall $v\in \mathrm{CauchySeq}(V)$
postulate $\exists v_\infty.\,\mathrm{lim}_{n\to\infty}\Vert v_n-v_\infty \Vert = 0$

Elaboration

For each Cauchy sequence $(v)_{i\in\mathbb N}$, there is a limit $v_\infty\in\mathcal V$ w.r.t. the natural norm. $\Longleftrightarrow$ The space $\mathcal V$ is complete.

Reference

Wikipedia: Banach space


Requirements

Cauchy sequence

Subset of

Normed vector space