Bernoulli numbers

Function

definiendum $B:\mathbb N\to\mathbb Q$
for all $z\in \mathbb C$
postulate $\frac{z}{\mathrm{e}^z-1}=\sum_{k=0}^\infty B_k\frac{1}{k!}z^k$

Discussion

Examples

$B_0=1$

$B_1=-\tfrac{1}{2}$

$B_2=\frac{1}{6}$

$B_4=-\frac{1}{30}$

$B_6=-\frac{1}{42}$

Parents

Subset of

Infinite series, ℚ valued function