context | $X,Y$ … small set |
definiendum | $ p\in X \times Y $ |
range | $ x\in X$ |
range | $ y\in Y$ |
postulate | $ \exists x,y.\,p=\langle x,y\rangle $ |
$ X \times Y\subset \mathcal{P}(\mathcal{P}(X \cap Y))$ |
---|
In accordance to the defintion of the n-tuple in Ordered pair, we set
$ X_1\times X_2\times X_3 \equiv (X_1\times X_2)\times X_3 $ |
---|
and inductively for
$ X_1\times X_1\times X_3\times \ \dots\ \times X_{n-1}\times X_n \equiv ((\dots((X_1\times X_2)\times X_3)\times\ \dots\ )\times X_{n-1})\times X_n $ |
---|