definiendum | C∈Cat |
postulate | C … category |
postulate | ObC,MorC … small |
for all | D∈Cat |
postulate | Cat[C,D] … functor category (C,D) |
Cat is the archetypical example for what is called a 2-cateogry: Each hom-class Cat[C,D] is again a (ordinary) category.
Specifically, in Cat, the hom-classes are functor categories and the hom-classes of those are natural transformations.
predicate | C … small ≡C in Cat |
In a small category, both ObC and MorC are proper sets. See Set universe for the definition of the smallness predicate.
The category of small posets is small itself. But for example, the categories of small sets, small topological spaces, small vector spaces or small groups is not small. The latter are locally small, however.
nLab: Cat, Small category, Large category