Category of F-algebras

Collection

context $F$ in ${\bf C}\longrightarrow{\bf C}$
definiendum $\mathcal{A}:\mathrm{Ob}_\mathrm{it}$
postulate $\mathcal{A}$ … $F$-algebra
definiendum $\langle f\rangle:\mathrm{it}[\langle A,\alpha\rangle, \langle B,\beta\rangle]$
postulate $f\circ\alpha=\beta\circ F(f)$

Discussion

The category of F-algebras and F-algebra homomorphisms. The postulate says that it can't matter if you perform the operation ($\alpha$ resp. $\beta$) before or after the transformation $f$.

Note that $\alpha,\beta,f$ are arrows in ${\bf C}$, while $\langle f\rangle$ denotes the arrow between $F$-algebras $\langle A,\alpha\rangle$ and $\langle B,\beta\rangle$ corresponding to the homomorphism $f$. Clearly, $\langle f\rangle$ and $f$ are in bijection and one often just writes $f$ for both.

Reference

Wikipedia: F-algbera

Parents

Context*

Endofunctor

Requirements

F-algebra

Element of

Categories