context | $\langle M,T_X\rangle$ … second-countable Hausdorff space |
context | $n\in \mathbb N$ |
let | $\langle \mathbb R^n,T_{\mathbb R^n}\rangle$ … Euclidean topology |
definiendum | $\langle U,\phi\rangle\in$ it |
inclusion | $U\in T_M$ |
exists | $U_{\mathbb R^n}\in T_{\mathbb R^n}$ |
inclusion | $\phi:U\to U_{\mathbb R^n}$ |
inclusion | $\phi$ … homeomorphism |
The charts on $M$ are the homeomorphism into $\mathbb R^n$.