Euclidean space

Set

context $ n\in \mathbb N $
definiendum $\mathbb E^n \equiv \langle d,\mathbb R^n\rangle $
inclusion $d:\mathbb R^n\times \mathbb R^n\to \mathbb R_+ $
postulate $d(x,y):=\left( \sum_{j=1}^n (x_j-y_j)^2 \right)^\frac{1}{2} $

Discussion

Reference

Wikipedia: Euclidean space

Parents

Subset of

Metric space

Context

Real coordinate space