context | $ n\in \mathbb N $ |
definiendum | $\mathbb E^n \equiv \langle d,\mathbb R^n\rangle $ |
inclusion | $d:\mathbb R^n\times \mathbb R^n\to \mathbb R_+ $ |
postulate | $d(x,y):=\left( \sum_{j=1}^n (x_j-y_j)^2 \right)^\frac{1}{2} $ |
Wikipedia: Euclidean space