Euclidean space
Set
context
$ n\in \mathbb N $
definiendum
$\mathbb E^n \equiv \langle d,\mathbb R^n\rangle $
inclusion
$d:\mathbb R^n\times \mathbb R^n\to \mathbb R_+ $
postulate
$d(x,y):=\left( \sum_{j=1}^n (x_j-y_j)^2 \right)^\frac{1}{2} $
Discussion
Reference
Wikipedia:
Euclidean space
Parents
Subset of
Metric space
Context
Real coordinate space