Hilbert space mean value

Set

context $V$…Hilbert space
definiendum $\overline{\cdot}_{-}:\mathrm{Observable}(V)\times V\to\mathbb R$
definiendum $\overline{A}_{\psi}:=\frac{\langle \psi | A\ \psi \rangle}{\Vert \psi \Vert^2}$

Discussion

One can rewrite this in many ways using:

For any vector $\phi$ we have…

Theorems

$AB=BA\implies \gamma\in [-1,1]$.

Parents

Context

Hilbert space