context | $V$…Hilbert space |
definiendum | $\overline{\cdot}_{-}:\mathrm{Observable}(V)\times V\to\mathbb R$ |
definiendum | $\overline{A}_{\psi}:=\frac{\langle \psi | A\ \psi \rangle}{\Vert \psi \Vert^2}$ |
One can rewrite this in many ways using:
For any vector $\phi$ we have…
$AB=BA\implies \gamma\in [-1,1]$.