context | X…left R-module |
definiendum | ⟨Hom(X,X),+,⋅,∗,⟩∈L(X,X) |
context | ⟨Hom(X,X),+,⋅⟩∈L(X,X) |
context | ∗:Hom(X,X)×Hom(X,X)→Hom(X,X) |
v∈M |
A,B∈Hom(X,Y) |
postulate | (A∗B)v=A(Bv) |
Theorem: A linear operator A:X→X is bijective if it has an inverse in L(X,X).