context | X,Y…left R-module |
definiendum | ⟨Hom(X,Y),+,⋅⟩∈L(X,Y) |
context | +:Hom(X,Y)×Hom(X,Y)→Hom(M,N) |
context | ⋅:R×Hom(X,Y)→Hom(X,Y) |
v∈M | |
r,s∈R | |
A,B∈Hom(X,Y) | |
postulate | (r⋅A+s⋅B) v=r (A v)+s (B v) |
A linear operator A:X→X over an n-dimensional vector space can be encoded in a matrix and if {v1,…,vn} is a basis then for all 1≥i≥n one has
A ei=∑nj=1Ai,j⋅ej
Wikipedia: Module