context | $X$…$\mathcal F$-vector space |
context | $n\in \mathbb N$ |
definiendum | $M\in \mathrm{MultiLin}(X^n)$ |
context | $ M:X^n \to \mathcal F$ |
$X^n$ being the cartesian product of $n$ instances of the vector space $X$.
$ a,b\in \mathcal F $ |
$ v_1,\dots,v_n,w\in X $ |
$ 1\le j\le n $ |
postulate | $ M(v_1,\dots,a\cdot v_j+b\cdot w,\dots,v_n)=a\ M(v_1,\dots,v_j,\dots,v_n)+b\ M(v_1,\dots,w,\dots,v_n) $ |