context | $X$ … set |
definiendum | $ Y \in \mathcal{P}(X) $ |
postulate | $ Y\subseteq X $ |
Here we define
$\mathcal{P}(X) \equiv \{Y\mid Y\subseteq X\}$
which is sensible in our set theory if, for each set $X$, we have
$\exists! P.\,P = \{Y\mid Y\subseteq X\}$
or, more formally,
$\forall X.\,\exists! P.\,P = \{Y\mid Y\subseteq X\}$
which is short for
$\forall X.\,\exists! P.\,\forall Y.\,\left(Y\in P\Leftrightarrow Y\subseteq X\right)$
The above is short for
$\forall X.\,\exists! P.\,\forall Y.\,\left(Y\in P\Leftrightarrow \forall Z.\,(Z\in Y\implies Z\in X)\right)$
and this is, apart from the exclamation mark,exactly the Axiom of power set.
Like in the case of the empty set, uniqueness follows from extensionality.
We can prove
$\forall Y.\,\left(Y\in \{\emptyset\}\leftrightarrow Y\subseteq \emptyset\right)$
Therefore, for $X$ being $\emptyset$, we can show that the job of $P$ is done by $\{\emptyset\}$. In other words
$\mathcal{P}(\emptyset)=\{\emptyset\}$ |
---|
Generally, $\emptyset\in\mathcal{P}(X)$ for any $X$. Hence no power set is empty.
One also writes $ \mathcal{P}(X) \equiv 2^X\equiv\Omega^X $.
Wikipedia: Axiom of power set