Singular values of a matrix

Set

context $ A \in \mathrm{SquareMatrix}(n,\mathbb C) $
definiendum $ \sqrt{\lambda} \in \mathrm{SingularVal}(A) $
postulate $ \lambda \in \mathrm{EigenVal}(A^*A) $

Discussion

Note that $A^*A$ is always Hermitian positive semi-definite matrix.

Singular values make sense for more general operators too.

Reference

Wikipedia: Singular value, Matrix norm

Parents

Context

Matrix eigenvalue