definition | ddt:(X1×⋯×Xn×R→R)→((R→X1×⋯×Xn)×R)→R |
let | ⋄ f(x1,…,xn,t) |
definition | (ddtf)(⟨t↦⟨r1(t),…,rn(t)⟩,t⟩):=∑nj=1∂f∂xj(⟨r1(t),…,rn(t),t⟩)⋅∂rj∂t(t)+∂f∂t(⟨r1(t),…,rn(t),t⟩) |
The total derivative of the (not explicitly time dependent) function
f:R3→R, f(x,y,t):=x2cos(y)
along the trajectory
R:R→R2, R:=t↦⟨7t,−3t5⟩
is
(ddtf)(R,t)=2Rx(t)cos(Ry(t))⋅R′x(t)+Rx(t)2sin(Ry(t))⋅R′y(t)
=2⋅72tcos(−3t5)−3⋅5⋅72t2+4sin(−3t5)
Wikipedia: Total derivative