# Differences

This shows you the differences between two versions of the page.

 adjacency_list [2014/02/08 02:49]nikolaj adjacency_list [2014/03/21 11:11] (current) Both sides previous revision Previous revision 2014/02/08 15:51 nikolaj 2014/02/08 02:49 nikolaj 2014/02/08 02:48 nikolaj 2014/02/08 02:33 nikolaj 2014/02/08 02:28 nikolaj 2014/02/08 02:27 nikolaj old revision restored (2013/12/21 19:57) Next revision Previous revision 2014/02/08 15:51 nikolaj 2014/02/08 02:49 nikolaj 2014/02/08 02:48 nikolaj 2014/02/08 02:33 nikolaj 2014/02/08 02:28 nikolaj 2014/02/08 02:27 nikolaj old revision restored (2013/12/21 19:57) Line 1: Line 1: ===== Adjacency list ===== ===== Adjacency list ===== ==== Set ==== ==== Set ==== - | @#88DDEE: $V$ ... countable set | + | @#55CCEE: context ​    | @#55CCEE: $V$ ... countable set | - | @#FFBB00: $\phi\in\mathrm{it}$ | + | @#FFBB00: definiendum ​| @#FFBB00: $\phi\in\mathrm{it}$ | - | @#55EE55: $\mathrm{dom}\ \phi = V$ | + | @#55EE55: postulate ​  | @#55EE55: $\mathrm{dom}\ \phi = V$ | - | @#FFFDDD: $v,u\in V$ | + | @#FFFDDD: for all     | @#FFFDDD: $v,u\in V$ | - | @#55EE55: $\phi(v)\subseteq V$ | + | @#55EE55: postulate ​  | @#55EE55: $\phi(v)\subseteq V$ | - | @#55EE55: $u\in\phi(v)\implies v\in\phi(u)$ | + | @#55EE55: postulate ​  | @#55EE55: $u\in\phi(v)\implies v\in\phi(u)$ | ==== Discussion ==== ==== Discussion ==== The value $\phi(v)$ denotes the set of vertices which are connected to $v$. The value $\phi(v)$ denotes the set of vertices which are connected to $v$. - The adjacency lists describe [[simple ​graphs]]. + The adjacency lists describe [[simple ​graph]]. ==== Parents ==== ==== Parents ==== === Subset of === === Subset of === [[Function]] [[Function]]