Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
analytic_function [2014/02/21 11:46]
nikolaj
analytic_function [2014/03/21 11:11]
127.0.0.1 external edit
Line 1: Line 1:
 ===== Analytic function ===== ===== Analytic function =====
 ==== Set ==== ==== Set ====
-| @#88DDEE: $\mathcal O\subset \mathbb C$ |+| @#55CCEE: context ​    | @#55CCEE: $\mathcal O\subset \mathbb C$ |
  
  
-| @#FFBB00: $f\in \mathrm{it}$ |+| @#FFBB00: definiendum ​| @#FFBB00: $f\in \mathrm{it}$ |
  
-| @#AAFFAA: $f:\mathcal O\to\mathbb C$ |+| @#AAFFAA: inclusion ​  | @#AAFFAA: $f:\mathcal O\to\mathbb C$ |
  
-| @#FFFDDD: $c$ ... series in $\mathbb C$  |+| @#FFFDDD: for all     | @#FFFDDD: $c$ ... series in $\mathbb C$  |
  
 >todo, roughly >todo, roughly
Line 55: Line 55:
 == Cauchy'​s integral formula == == Cauchy'​s integral formula ==
 $\frac{1}{n!}f^{(n)}(p) = \frac{1}{2\pi\,​ i} \oint_\gamma \frac{f(z)}{(z-p)^{n+1}}\,​ \mathrm dz$ $\frac{1}{n!}f^{(n)}(p) = \frac{1}{2\pi\,​ i} \oint_\gamma \frac{f(z)}{(z-p)^{n+1}}\,​ \mathrm dz$
 +
 +Roughly, the Laplace transform uses this for a re-encoding of a functions $f:\mathbb R^+\to\mathbb R$ with Taylor expansion $f(t)=\sum_{n=0}^\infty a_n t^n$, namely by mapping $t^n$ to $s^{-n}\cdot \frac{1}{s}$.
  
 === Reference === === Reference ===
Link to graph
Log In
Improvements of the human condition