Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
analytic_function [2014/02/21 11:46]
nikolaj
analytic_function [2014/11/30 18:38]
nikolaj
Line 1: Line 1:
 ===== Analytic function ===== ===== Analytic function =====
 ==== Set ==== ==== Set ====
-| @#88DDEE: $\mathcal O\subset \mathbb C$ |+| @#55CCEE: context ​    | @#55CCEE: $\mathcal O\subset \mathbb C$ |
  
  
-| @#FFBB00: $f\in \mathrm{it}$ |+| @#FFBB00: definiendum ​| @#FFBB00: $f\in \mathrm{it}$ |
  
-| @#AAFFAA: $f:\mathcal O\to\mathbb C$ |+| @#AAFFAA: inclusion ​  | @#AAFFAA: $f:\mathcal O\to\mathbb C$ |
  
-| @#FFFDDD: $c$ ... series in $\mathbb C$  |+| @#FFFDDD: for all     | @#FFFDDD: $c$ ... series in $\mathbb C$  |
  
 >todo, roughly >todo, roughly
Line 27: Line 27:
 {{fence_height.png}} {{fence_height.png}}
  
-A complex function $f(z)$ consists of two real functions, so it's fence height is just given by the sum of the fence heigh of \mathrm{Re}\,​f(z)$ and $i\,​\mathrm{Im}\,​f(z)$. Let's consider the function $f(z):​=z=r\,​\cos\theta+i\,​r\,​\sin\theta$. We have +A complex function $f(z)$ consists of two real functions, so it's fence height is just given by the sum of the fence heigh of $\mathrm{Re}\,​f(z)$ and $i\,​\mathrm{Im}\,​f(z)$. Let's consider the function $f(z):​=z=r\,​\cos\theta+i\,​r\,​\sin\theta$. We have 
  
 $z^n=r^n\,​\mathrm{e}^{i\,​n\,​\theta}=r\,​\cos(n\,​\theta)+i\,​r\,​\sin(n\,​\theta)$ $z^n=r^n\,​\mathrm{e}^{i\,​n\,​\theta}=r\,​\cos(n\,​\theta)+i\,​r\,​\sin(n\,​\theta)$
Line 55: Line 55:
 == Cauchy'​s integral formula == == Cauchy'​s integral formula ==
 $\frac{1}{n!}f^{(n)}(p) = \frac{1}{2\pi\,​ i} \oint_\gamma \frac{f(z)}{(z-p)^{n+1}}\,​ \mathrm dz$ $\frac{1}{n!}f^{(n)}(p) = \frac{1}{2\pi\,​ i} \oint_\gamma \frac{f(z)}{(z-p)^{n+1}}\,​ \mathrm dz$
 +
 +Roughly, the Laplace transform uses this for a re-encoding of a functions $f:\mathbb R^+\to\mathbb R$ with Taylor expansion $f(t)=\sum_{n=0}^\infty a_n t^n$, namely by mapping $t^n$ to $s^{-n}\cdot \frac{1}{s}$.
  
 === Reference === === Reference ===
Link to graph
Log In
Improvements of the human condition