Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
analytic_function [2014/02/21 11:46]
nikolaj
analytic_function [2018/03/10 19:52]
nikolaj
Line 1: Line 1:
 ===== Analytic function ===== ===== Analytic function =====
 ==== Set ==== ==== Set ====
-| @#88DDEE: $\mathcal O\subset \mathbb C$ | +| @#55CCEE: context ​    | @#55CCEE: $\mathcal O\subset \mathbb C$ | 
- +| @#FFBB00: definiendum ​| @#FFBB00: $f\in \mathrm{it}$ | 
- +| @#AAFFAA: inclusion ​  | @#AAFFAA: $f:\mathcal O\to\mathbb C$ | 
-| @#FFBB00: $f\in \mathrm{it}$ | +| @#FFFDDD: for all     | @#FFFDDD: $c$ ... series in $\mathbb C$  |
- +
-| @#AAFFAA: $f:\mathcal O\to\mathbb C$ | +
- +
-| @#FFFDDD: $c$ ... series in $\mathbb C$  |+
  
 >todo, roughly >todo, roughly
Line 14: Line 10:
 >​$\exists c.\ \forall z.\ f(z)=\sum_{n=-\infty}^\infty c_n\,​z^n$ ​ >​$\exists c.\ \forall z.\ f(z)=\sum_{n=-\infty}^\infty c_n\,​z^n$ ​
  
-==== Discussion ​====+----- 
 +=== Discussion ===
 Picture a continuous function $f:\mathbb R^2\to\mathbb R$ as a surface given by $f(x,y)$ and imagine drawing a circle of radius $1$ around the point at the origin and is parametrized by $\langle \cos\theta,​\sin\theta,​h\rangle$ where $\theta\in[0,​2\pi)$ and $h\in[0,​f(\cos\theta,​\sin\theta))$. See the picture below. It looks like a cylinder cut of at height $f(\cos\theta,​\sin\theta)$. Let's call it a "​fence"​. What is the surface of that fence? Clearly, it's given by the integral $\int_0^{2\pi}\mathrm{d}\theta$ of $f(\cos\theta,​\sin\theta)$. And so the average height (if we count negative height as negative contributions) of the fence is  Picture a continuous function $f:\mathbb R^2\to\mathbb R$ as a surface given by $f(x,y)$ and imagine drawing a circle of radius $1$ around the point at the origin and is parametrized by $\langle \cos\theta,​\sin\theta,​h\rangle$ where $\theta\in[0,​2\pi)$ and $h\in[0,​f(\cos\theta,​\sin\theta))$. See the picture below. It looks like a cylinder cut of at height $f(\cos\theta,​\sin\theta)$. Let's call it a "​fence"​. What is the surface of that fence? Clearly, it's given by the integral $\int_0^{2\pi}\mathrm{d}\theta$ of $f(\cos\theta,​\sin\theta)$. And so the average height (if we count negative height as negative contributions) of the fence is 
  
Line 27: Line 24:
 {{fence_height.png}} {{fence_height.png}}
  
-A complex function $f(z)$ consists of two real functions, so it's fence height is just given by the sum of the fence heigh of \mathrm{Re}\,​f(z)$ and $i\,​\mathrm{Im}\,​f(z)$. Let's consider the function $f(z):​=z=r\,​\cos\theta+i\,​r\,​\sin\theta$. We have +A complex function $f(z)$ consists of two real functions, so it's fence height is just given by the sum of the fence heigh of $\mathrm{Re}\,​f(z)$ and $i\,​\mathrm{Im}\,​f(z)$. Let's consider the function $f(z):​=z=r\,​\cos\theta+i\,​r\,​\sin\theta$. We have 
  
-$z^n=r^n\,​\mathrm{e}^{i\,​n\,​\theta}=r\,​\cos(n\,​\theta)+i\,​r\,​\sin(n\,​\theta)$+$z^n=r^n\,​\mathrm{e}^{i\,​n\,​\theta}=r^n\,​\cos(n\,​\theta)+i\,​r^n\,​\sin(n\,​\theta)$
  
 Both real and imaginary part oscillate along $\theta$. So from the plots below alone it is obvious that the average fence height for $n\neq 0$ must be zero Both real and imaginary part oscillate along $\theta$. So from the plots below alone it is obvious that the average fence height for $n\neq 0$ must be zero
Line 55: Line 52:
 == Cauchy'​s integral formula == == Cauchy'​s integral formula ==
 $\frac{1}{n!}f^{(n)}(p) = \frac{1}{2\pi\,​ i} \oint_\gamma \frac{f(z)}{(z-p)^{n+1}}\,​ \mathrm dz$ $\frac{1}{n!}f^{(n)}(p) = \frac{1}{2\pi\,​ i} \oint_\gamma \frac{f(z)}{(z-p)^{n+1}}\,​ \mathrm dz$
 +
 +Roughly, the Laplace transform uses this for a re-encoding of a functions $f:\mathbb R^+\to\mathbb R$ with Taylor expansion $f(t)=\sum_{n=0}^\infty a_n t^n$, namely by mapping $t^n$ to $s^{-n}\cdot \frac{1}{s}$.
  
 === Reference === === Reference ===
 Wikipedia: [[http://​en.wikipedia.org/​wiki/​Holomorphic_functions_are_analytic|Analyticity of holomorphic functions]] Wikipedia: [[http://​en.wikipedia.org/​wiki/​Holomorphic_functions_are_analytic|Analyticity of holomorphic functions]]
-==== Parents ====+ 
 +-----
 === Equivalent to === === Equivalent to ===
 [[Holomorphic function]] [[Holomorphic function]]
 === Requirements === === Requirements ===
 [[Infinite sum of complex numbers]] [[Infinite sum of complex numbers]]
Link to graph
Log In
Improvements of the human condition