Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Last revision Both sides next revision
analytic_function [2014/03/21 11:11]
127.0.0.1 external edit
analytic_function [2016/09/28 18:20]
nikolaj
Line 2: Line 2:
 ==== Set ==== ==== Set ====
 | @#55CCEE: context ​    | @#55CCEE: $\mathcal O\subset \mathbb C$ | | @#55CCEE: context ​    | @#55CCEE: $\mathcal O\subset \mathbb C$ |
- 
- 
 | @#FFBB00: definiendum | @#FFBB00: $f\in \mathrm{it}$ | | @#FFBB00: definiendum | @#FFBB00: $f\in \mathrm{it}$ |
- 
 | @#AAFFAA: inclusion ​  | @#AAFFAA: $f:\mathcal O\to\mathbb C$ | | @#AAFFAA: inclusion ​  | @#AAFFAA: $f:\mathcal O\to\mathbb C$ |
- 
 | @#FFFDDD: for all     | @#FFFDDD: $c$ ... series in $\mathbb C$  | | @#FFFDDD: for all     | @#FFFDDD: $c$ ... series in $\mathbb C$  |
  
Line 14: Line 10:
 >​$\exists c.\ \forall z.\ f(z)=\sum_{n=-\infty}^\infty c_n\,​z^n$ ​ >​$\exists c.\ \forall z.\ f(z)=\sum_{n=-\infty}^\infty c_n\,​z^n$ ​
  
-==== Discussion ​====+----- 
 +=== Discussion ===
 Picture a continuous function $f:\mathbb R^2\to\mathbb R$ as a surface given by $f(x,y)$ and imagine drawing a circle of radius $1$ around the point at the origin and is parametrized by $\langle \cos\theta,​\sin\theta,​h\rangle$ where $\theta\in[0,​2\pi)$ and $h\in[0,​f(\cos\theta,​\sin\theta))$. See the picture below. It looks like a cylinder cut of at height $f(\cos\theta,​\sin\theta)$. Let's call it a "​fence"​. What is the surface of that fence? Clearly, it's given by the integral $\int_0^{2\pi}\mathrm{d}\theta$ of $f(\cos\theta,​\sin\theta)$. And so the average height (if we count negative height as negative contributions) of the fence is  Picture a continuous function $f:\mathbb R^2\to\mathbb R$ as a surface given by $f(x,y)$ and imagine drawing a circle of radius $1$ around the point at the origin and is parametrized by $\langle \cos\theta,​\sin\theta,​h\rangle$ where $\theta\in[0,​2\pi)$ and $h\in[0,​f(\cos\theta,​\sin\theta))$. See the picture below. It looks like a cylinder cut of at height $f(\cos\theta,​\sin\theta)$. Let's call it a "​fence"​. What is the surface of that fence? Clearly, it's given by the integral $\int_0^{2\pi}\mathrm{d}\theta$ of $f(\cos\theta,​\sin\theta)$. And so the average height (if we count negative height as negative contributions) of the fence is 
  
Line 27: Line 24:
 {{fence_height.png}} {{fence_height.png}}
  
-A complex function $f(z)$ consists of two real functions, so it's fence height is just given by the sum of the fence heigh of \mathrm{Re}\,​f(z)$ and $i\,​\mathrm{Im}\,​f(z)$. Let's consider the function $f(z):​=z=r\,​\cos\theta+i\,​r\,​\sin\theta$. We have +A complex function $f(z)$ consists of two real functions, so it's fence height is just given by the sum of the fence heigh of $\mathrm{Re}\,​f(z)$ and $i\,​\mathrm{Im}\,​f(z)$. Let's consider the function $f(z):​=z=r\,​\cos\theta+i\,​r\,​\sin\theta$. We have 
  
 $z^n=r^n\,​\mathrm{e}^{i\,​n\,​\theta}=r\,​\cos(n\,​\theta)+i\,​r\,​\sin(n\,​\theta)$ $z^n=r^n\,​\mathrm{e}^{i\,​n\,​\theta}=r\,​\cos(n\,​\theta)+i\,​r\,​\sin(n\,​\theta)$
Line 60: Line 57:
 === Reference === === Reference ===
 Wikipedia: [[http://​en.wikipedia.org/​wiki/​Holomorphic_functions_are_analytic|Analyticity of holomorphic functions]] Wikipedia: [[http://​en.wikipedia.org/​wiki/​Holomorphic_functions_are_analytic|Analyticity of holomorphic functions]]
-==== Parents ====+ 
 +-----
 === Equivalent to === === Equivalent to ===
 [[Holomorphic function]] [[Holomorphic function]]
 === Requirements === === Requirements ===
 [[Infinite sum of complex numbers]] [[Infinite sum of complex numbers]]
Link to graph
Log In
Improvements of the human condition