Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Last revision Both sides next revision
analytic_function [2014/11/30 18:38]
nikolaj
analytic_function [2016/09/28 18:20]
nikolaj
Line 2: Line 2:
 ==== Set ==== ==== Set ====
 | @#55CCEE: context ​    | @#55CCEE: $\mathcal O\subset \mathbb C$ | | @#55CCEE: context ​    | @#55CCEE: $\mathcal O\subset \mathbb C$ |
- 
- 
 | @#FFBB00: definiendum | @#FFBB00: $f\in \mathrm{it}$ | | @#FFBB00: definiendum | @#FFBB00: $f\in \mathrm{it}$ |
- 
 | @#AAFFAA: inclusion ​  | @#AAFFAA: $f:\mathcal O\to\mathbb C$ | | @#AAFFAA: inclusion ​  | @#AAFFAA: $f:\mathcal O\to\mathbb C$ |
- 
 | @#FFFDDD: for all     | @#FFFDDD: $c$ ... series in $\mathbb C$  | | @#FFFDDD: for all     | @#FFFDDD: $c$ ... series in $\mathbb C$  |
  
Line 14: Line 10:
 >​$\exists c.\ \forall z.\ f(z)=\sum_{n=-\infty}^\infty c_n\,​z^n$ ​ >​$\exists c.\ \forall z.\ f(z)=\sum_{n=-\infty}^\infty c_n\,​z^n$ ​
  
-==== Discussion ​====+----- 
 +=== Discussion ===
 Picture a continuous function $f:\mathbb R^2\to\mathbb R$ as a surface given by $f(x,y)$ and imagine drawing a circle of radius $1$ around the point at the origin and is parametrized by $\langle \cos\theta,​\sin\theta,​h\rangle$ where $\theta\in[0,​2\pi)$ and $h\in[0,​f(\cos\theta,​\sin\theta))$. See the picture below. It looks like a cylinder cut of at height $f(\cos\theta,​\sin\theta)$. Let's call it a "​fence"​. What is the surface of that fence? Clearly, it's given by the integral $\int_0^{2\pi}\mathrm{d}\theta$ of $f(\cos\theta,​\sin\theta)$. And so the average height (if we count negative height as negative contributions) of the fence is  Picture a continuous function $f:\mathbb R^2\to\mathbb R$ as a surface given by $f(x,y)$ and imagine drawing a circle of radius $1$ around the point at the origin and is parametrized by $\langle \cos\theta,​\sin\theta,​h\rangle$ where $\theta\in[0,​2\pi)$ and $h\in[0,​f(\cos\theta,​\sin\theta))$. See the picture below. It looks like a cylinder cut of at height $f(\cos\theta,​\sin\theta)$. Let's call it a "​fence"​. What is the surface of that fence? Clearly, it's given by the integral $\int_0^{2\pi}\mathrm{d}\theta$ of $f(\cos\theta,​\sin\theta)$. And so the average height (if we count negative height as negative contributions) of the fence is 
  
Line 60: Line 57:
 === Reference === === Reference ===
 Wikipedia: [[http://​en.wikipedia.org/​wiki/​Holomorphic_functions_are_analytic|Analyticity of holomorphic functions]] Wikipedia: [[http://​en.wikipedia.org/​wiki/​Holomorphic_functions_are_analytic|Analyticity of holomorphic functions]]
-==== Parents ====+ 
 +-----
 === Equivalent to === === Equivalent to ===
 [[Holomorphic function]] [[Holomorphic function]]
 === Requirements === === Requirements ===
 [[Infinite sum of complex numbers]] [[Infinite sum of complex numbers]]
Link to graph
Log In
Improvements of the human condition