# Differences

This shows you the differences between two versions of the page.

 bipartite_adjacency_matrix [2014/02/08 03:00]nikolaj bipartite_adjacency_matrix [2014/03/21 11:11] (current) Both sides previous revision Previous revision 2014/02/08 03:00 nikolaj 2014/02/08 03:00 nikolaj 2014/02/08 03:00 nikolaj 2014/02/08 02:59 nikolaj 2014/02/08 02:59 nikolaj 2014/02/08 02:59 nikolaj old revision restored (2014/02/08 02:12) Next revision Previous revision 2014/02/08 03:00 nikolaj 2014/02/08 03:00 nikolaj 2014/02/08 03:00 nikolaj 2014/02/08 02:59 nikolaj 2014/02/08 02:59 nikolaj 2014/02/08 02:59 nikolaj old revision restored (2014/02/08 02:12) Line 1: Line 1: ===== Bipartite adjacency matrix ===== ===== Bipartite adjacency matrix ===== ==== Set ==== ==== Set ==== - | @#88DDEE: $n_X,​n_Y\in\mathbb N$ | + | @#55CCEE: context ​    | @#55CCEE: $n_X,​n_Y\in\mathbb N$ | - | @#FFBB00: $A \in \mathrm{it}(n_X,​n_Y)$ | + | @#FFBB00: definiendum ​| @#FFBB00: $B \in \mathrm{it}(n_X,​n_Y)$ | - | @#55EE55: $A \in \mathrm{Matrix}(n_X,​n_Y,​\mathbb N)$ | + | @#55EE55: postulate ​  | @#55EE55: $B \in \mathrm{Matrix}(n_X,​n_Y,​\mathbb N)$ | ==== Discussion ==== ==== Discussion ==== - If the indices $i,j$ label two vertices belonging to the partitions $X,Y$ of a finite [[bipartite graph]], respectively,​ then the value $A_{ij}$ determines the number of edges joining them. + If the indices $i,j$ label two vertices belonging to the partitions $X,Y$ of a finite [[bipartite graph]], respectively,​ then the value $B_{ij}$ determines the number of edges joining them. ==== Parents ==== ==== Parents ==== === Subset of === === Subset of ===