# Differences

This shows you the differences between two versions of the page.

 bipartite_complete_graph [2014/02/08 00:55]nikolaj bipartite_complete_graph [2014/03/21 11:11] (current) Both sides previous revision Previous revision 2014/02/08 00:57 nikolaj 2014/02/08 00:55 nikolaj 2014/02/08 00:45 nikolaj 2014/02/08 00:45 nikolaj 2014/02/08 00:40 nikolaj old revision restored (2014/02/08 00:30) Next revision Previous revision 2014/02/08 00:57 nikolaj 2014/02/08 00:55 nikolaj 2014/02/08 00:45 nikolaj 2014/02/08 00:45 nikolaj 2014/02/08 00:40 nikolaj old revision restored (2014/02/08 00:30) Line 1: Line 1: ===== Bipartite complete graph ===== ===== Bipartite complete graph ===== ==== Set ==== ==== Set ==== - | @#88DDEE: $V,E$ ... set | + | @#55CCEE: context ​    | @#55CCEE: $V,E$ ... set | - | @#FFBB00: $\langle V,​E,​\psi\rangle \in \mathrm{it}(E,​V)$ | + | @#FFBB00: definiendum ​| @#FFBB00: $\langle V,​E,​\psi\rangle \in \mathrm{it}(E,​V)$ | - | @#55EE55: $\langle V,​E,​\psi\rangle$ ... undirected graph | + | @#55EE55: postulate ​  | @#55EE55: $\langle V,​E,​\psi\rangle$ ... undirected graph | - | @#DDDDDD: $X\cap Y=\emptyset$ | + | @#DDDDDD: range       | @#DDDDDD: $X\cap Y=\emptyset$ | - | @#DDDDDD: $x\in X$ | + | @#DDDDDD: range       | @#DDDDDD: $x\in X$ | - | @#DDDDDD: $y\in Y$ | + | @#DDDDDD: range       | @#DDDDDD: $y\in Y$ | - | @#55EE55: $\exists X,Y.\ (\forall u,v.\ \{u,​v\}\in\mathrm{im}(\psi)\implies (u\in X\land v\in Y)\lor (v\in X\land u\in Y)) \land (\forall x,y.\ \{x,​y\}\in\mathrm{im}\ \psi$ | + | @#55EE55: postulate ​  | @#55EE55: $\exists X,Y.\ (\forall u,v.\ \{u,​v\}\in\mathrm{im}(\psi)\implies (u\in X\land v\in Y)\lor (v\in X\land u\in Y)) \land (\forall x,y.\ \{x,​y\}\in\mathrm{im}\ \psi)$ | ==== Discussion ==== ==== Discussion ====