Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
bipartite_graph [2014/03/21 11:11]
127.0.0.1 external edit
bipartite_graph [2014/04/06 14:51] (current)
nikolaj
Line 2: Line 2:
 ==== Set ==== ==== Set ====
 | @#55CCEE: context ​    | @#55CCEE: $V$ ... set | | @#55CCEE: context ​    | @#55CCEE: $V$ ... set |
- 
 | @#FFBB00: definiendum | @#FFBB00: $\langle V,E\rangle \in \mathrm{it}(E,​V) $ | | @#FFBB00: definiendum | @#FFBB00: $\langle V,E\rangle \in \mathrm{it}(E,​V) $ |
- 
 | @#55EE55: postulate ​  | @#55EE55: $ \langle V,E\rangle $ ... undirected graph | | @#55EE55: postulate ​  | @#55EE55: $ \langle V,E\rangle $ ... undirected graph |
- 
 | @#DDDDDD: range       | @#DDDDDD: $ X\cup Y=V $ | | @#DDDDDD: range       | @#DDDDDD: $ X\cup Y=V $ |
 | @#DDDDDD: range       | @#DDDDDD: $ X\cap Y=\emptyset $ | | @#DDDDDD: range       | @#DDDDDD: $ X\cap Y=\emptyset $ |
 | @#DDDDDD: range       | @#DDDDDD: $ v,w\in V $ | | @#DDDDDD: range       | @#DDDDDD: $ v,w\in V $ |
- 
 | @#55EE55: postulate ​  | @#55EE55: $\exists X,Y.\ \forall u,v.\ \{u,v\}\in E\implies \neg(u\in X\land v\in X)\land \neg(v\in Y\land u\in Y) $ | | @#55EE55: postulate ​  | @#55EE55: $\exists X,Y.\ \forall u,v.\ \{u,v\}\in E\implies \neg(u\in X\land v\in X)\land \neg(v\in Y\land u\in Y) $ |
  
Link to graph
Log In
Improvements of the human condition