Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
cardinal_arithmetic_with_types [2014/03/30 20:18]
nikolaj
cardinal_arithmetic_with_types [2014/03/30 20:18]
nikolaj
Line 4: Line 4:
 If $X$ has two terms $a,b:X$ and $Y$ has three terms $u,v,w:Y$, then $X+Y$ has five terms If $X$ has two terms $a,b:X$ and $Y$ has three terms $u,v,w:Y$, then $X+Y$ has five terms
  
-$\nu_{\mathcal l}(a),\ \nu_{\mathcal l}(b),\ \nu_{\mathcal r}(u),\ \nu_{\mathcal r}(v),\ \nu_{\mathcal r}(w):X+Y$+  * $\nu_{\mathcal l}(a),\ \nu_{\mathcal l}(b),\ \nu_{\mathcal r}(u),\ \nu_{\mathcal r}(v),\ \nu_{\mathcal r}(w):X+Y$
  
 Similarly, $X\times Y$ has six terms Similarly, $X\times Y$ has six terms
  
-$\langle a,​u\rangle,​\ \langle a,​v\rangle,​\ \langle a,​w\rangle,​\ \langle b,​u\rangle,​\ \langle b,​v\rangle,​\ \langle b,​w\rangle:​X\times Y$+  * $\langle a,​u\rangle,​\ \langle a,​v\rangle,​\ \langle a,​w\rangle,​\ \langle b,​u\rangle,​\ \langle b,​v\rangle,​\ \langle b,​w\rangle:​X\times Y$
  
 and $X\to Y$ has eight terms and $X\to Y$ has eight terms
  
-$a\mapsto u\text{ and }b\mapsto u,\ a\mapsto u\text{ and }b\mapsto v,\dots :X\to Y$+  * $a\mapsto u\text{ and }b\mapsto u,\ a\mapsto u\text{ and }b\mapsto v,\dots :X\to Y$
  
 and these have no terms else. So clearly, at least for types where a cardinal assignment $|\cdot|$ into the natural numbers makes sense, we have and these have no terms else. So clearly, at least for types where a cardinal assignment $|\cdot|$ into the natural numbers makes sense, we have
Line 32: Line 32:
 This doesn'​t just hold for the arithmetic side, but we can also define the type constructors in terms of $\sum$ and $\prod$: ​ This doesn'​t just hold for the arithmetic side, but we can also define the type constructors in terms of $\sum$ and $\prod$: ​
  
-  * For $A$ is a type of only two terms $\mathcal{l},​\mathcal{r}:​A$ and $B(\mathcal{l}):​=X,​ B(\mathcal{l}):​=Y$,​ we get $\sum(x:​A).\,​B(x)=X+Y$+For $A$ is a type of only two terms $\mathcal{l},​\mathcal{r}:​A$ and $B(\mathcal{l}):​=X,​ B(\mathcal{l}):​=Y$,​ we get  
 +  * $\sum(x:​A).\,​B(x)=X+Y$
 For $B$ being constant (think of how the fibration looks like), we get For $B$ being constant (think of how the fibration looks like), we get
   * $\sum(x:​A).\,​B(x)=\sum(x:​A).\,​B=A\times B$   * $\sum(x:​A).\,​B(x)=\sum(x:​A).\,​B=A\times B$
Link to graph
Log In
Improvements of the human condition