Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
category_._set_theory [2014/04/07 17:19]
nikolaj
category_._set_theory [2014/04/07 19:00]
nikolaj
Line 4: Line 4:
 | @#FFBB00: definiendum | @#FFBB00: $ \langle \mathcal{O},​M,​id,​* \rangle \in \mathrm{it}$ | | @#FFBB00: definiendum | @#FFBB00: $ \langle \mathcal{O},​M,​id,​* \rangle \in \mathrm{it}$ |
 | @#FF9944: definition ​ | @#FF9944: $\mathrm{Mor}:​\mathcal{O}\times\mathcal{O}\to M$ | | @#FF9944: definition ​ | @#FF9944: $\mathrm{Mor}:​\mathcal{O}\times\mathcal{O}\to M$ |
-| @#FF9944: definition ​ | @#FF9944: $\circ:​{\large\prod}_{A,​B,​C:\mathcal{O}}\,​\mathrm{Mor}(B,​C)\times\mathrm{Mor}(A,​B)\to\mathrm{Mor}(A,​C)$ | +| @#FF9944: definition ​ | @#FF9944: $\circ:​{\large\prod}_{A,​B,​C\in\mathcal{O}}\,​\mathrm{Mor}(B,​C)\times\mathrm{Mor}(A,​B)\to\mathrm{Mor}(A,​C)$ | 
-| @#FF9944: definition ​ | @#FF9944: $id:​{\large\prod}_{A:\mathcal{O}}\,​\mathrm{Mor}_O(A,​A)$ |+| @#FF9944: definition ​ | @#FF9944: $id:​{\large\prod}_{A\in\mathcal{O}}\,​\mathrm{Mor}_O(A,​A)$ |
 | @#55EE55: postulate ​  | @#55EE55: $\mathrm{Mor}(A,​B)\cap\mathrm{Mor}(U,​V)\ne\emptyset\implies A=B\land U=V$ | | @#55EE55: postulate ​  | @#55EE55: $\mathrm{Mor}(A,​B)\cap\mathrm{Mor}(U,​V)\ne\emptyset\implies A=B\land U=V$ |
 | @#55EE55: postulate ​  | @#55EE55: $(g\circ f)\circ h=g\circ (f\circ h)$ | | @#55EE55: postulate ​  | @#55EE55: $(g\circ f)\circ h=g\circ (f\circ h)$ |
Line 11: Line 11:
  
 ==== Discussion ==== ==== Discussion ====
-Within set theory, we can define a category as quintuple given by two sets and two (polymorphic) ​maps into them. +Within set theory, we can define a category as quintuple given by two sets and two maps into them. The $\prod$-notation giving the set theoretical model for polymorphic functions, is given in [[function]].
  
 The three axioms say the following: The hom-sets are pairwise disjoint, the composition is associative and $id$ denotes the identity. The three axioms say the following: The hom-sets are pairwise disjoint, the composition is associative and $id$ denotes the identity.
Link to graph
Log In
Improvements of the human condition