Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
category_._set_theory [2014/04/07 17:19]
nikolaj
category_._set_theory [2014/04/07 19:02]
nikolaj
Line 4: Line 4:
 | @#FFBB00: definiendum | @#FFBB00: $ \langle \mathcal{O},​M,​id,​* \rangle \in \mathrm{it}$ | | @#FFBB00: definiendum | @#FFBB00: $ \langle \mathcal{O},​M,​id,​* \rangle \in \mathrm{it}$ |
 | @#FF9944: definition ​ | @#FF9944: $\mathrm{Mor}:​\mathcal{O}\times\mathcal{O}\to M$ | | @#FF9944: definition ​ | @#FF9944: $\mathrm{Mor}:​\mathcal{O}\times\mathcal{O}\to M$ |
-| @#FF9944: definition ​ | @#FF9944: $\circ:​{\large\prod}_{A,​B,​C:\mathcal{O}}\,​\mathrm{Mor}(B,​C)\times\mathrm{Mor}(A,​B)\to\mathrm{Mor}(A,​C)$ | +| @#FF9944: definition ​ | @#FF9944: $\circ:​{\large\prod}_{A,​B,​C\in\mathcal{O}}\,​\mathrm{Mor}(B,​C)\times\mathrm{Mor}(A,​B)\to\mathrm{Mor}(A,​C)$ | 
-| @#FF9944: definition ​ | @#FF9944: $id:​{\large\prod}_{A:\mathcal{O}}\,​\mathrm{Mor}_O(A,​A)$ |+| @#FF9944: definition ​ | @#FF9944: $id:​{\large\prod}_{A\in\mathcal{O}}\,​\mathrm{Mor}_O(A,​A)$ |
 | @#55EE55: postulate ​  | @#55EE55: $\mathrm{Mor}(A,​B)\cap\mathrm{Mor}(U,​V)\ne\emptyset\implies A=B\land U=V$ | | @#55EE55: postulate ​  | @#55EE55: $\mathrm{Mor}(A,​B)\cap\mathrm{Mor}(U,​V)\ne\emptyset\implies A=B\land U=V$ |
 | @#55EE55: postulate ​  | @#55EE55: $(g\circ f)\circ h=g\circ (f\circ h)$ | | @#55EE55: postulate ​  | @#55EE55: $(g\circ f)\circ h=g\circ (f\circ h)$ |
Line 11: Line 11:
  
 ==== Discussion ==== ==== Discussion ====
-Within set theory, we can define a category as quintuple given by two sets and two (polymorphic) ​maps into them. +Within set theory, we can define a category as quintuple given by two sets and two maps into them. The $\prod$-notation giving the set theoretical model for dependend/​polymorphic functions, is given in [[function]].
  
 The three axioms say the following: The hom-sets are pairwise disjoint, the composition is associative and $id$ denotes the identity. The three axioms say the following: The hom-sets are pairwise disjoint, the composition is associative and $id$ denotes the identity.
Link to graph
Log In
Improvements of the human condition